
J .  Fluid Mech. (1988), vol. 194, p p .  187-216 

Printed in Great Britain 

187 

Nonlinear stability of a stratified shear flow in the 
regime with an unsteady critical layer 

By S. M. CHURILOV A N D  I. G. S H U K H M A N  
Siberian Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation 

(SibIZMIR), USSR Academy of Sciences, Irkutsk 33, P.O. Box 4, 664033 USSR 

(Received 8 April 1987 and in revised form 3 December 1987) 

In a previous paper (Churilov & Shukhman 1 9 8 7 ~ )  we investigated the nonlinear 
development of disturbances to a weakly supercritical, stratified shear flow ; we now 
report a continuation of that study. The degree of supercriticality of the flow is 
assumed not too small so that - unlike Paper 1 - the critical layer that appears in the 
region of resonance of the wave with the flow is an unsteady rather than viscous one. 
The evolution equation with cubic and quintic nonlinearity has been derived. The 
nonlinear term is non-local in time, i.e. depends on the entire preceding development 
of the disturbance. This equation has been used in the analysis of the evolution of an 
initial1 small disturbance. It is shown that where wave amplitude A is small enough 
( A  < vz, v is the inverse of the Reynolds number), cubic nonlinearity dominates. In 
this case, as in Paper 1, the character of the evolution essentially depends on the sign 
of the quantity (7 - l) ,  where 7 is the Prandtl number. However, independently of 
this sign the disturbance reaches - as it increases - the level A - O(vi) and then 
quintic nonlinearity becomes dominant. At this stage an ‘explosive ’ regime occurs 
and amplitude grows as A - ( t , - t ) - i .  The results obtained, together with the 
findings of Paper 1 ,  provide a full description of the development of small 
disturbances a t  a large (but finite) Reynolds number in different regimes which are 
determined by the degree of flow’s supercriticality. 

Y 

1. Introduction 
This paper is a continuation of the study of the character of the evolution of 

weakly unstable disturbances of a small amplitude in a stratified shear flow that was 
initiated by Churilov & Shukhman (1987u, hereinafter referred to as Paper 1)  and 
Brown, Rosen & Maslowe, (1981). With this end in view, as in Paper 1, we shall 
consider a flow u = tanhy near the stability boundary, i.e. when the Richardson 
number J is slightly less than a($-J < a). An important role in the development of 
disturbances is known to be played by the critical layer (CL) which is produced in a 
region where the wave’s phase velocity coincides with the flow velocity. We recall 
that according as which of the three scales viscous I,, unsteady I, or nonlinear I,, is 
greater, where 

the CL regime will be, respectively, a viscous, an unsteady or a nonlinear one. Here 
A is the disturbance amplitude, y = 1 A-ldA/dt I , and v is the inverse of the 
Reynolds number ; all quantities have dimensionless representations such that the 
typical density gradient and the shear flow velocity and width are equal to unity. 

In Paper 1 the evolution of disturbances has been investigated in the regime of a 
viscous CL which is realized for sufficiently small amplitudes A and supercriticality 

1, = d, It  = y ,  I, = A:, (1.1) 
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FIGURE 1.  A diagram of the various regimes of the critical layer : I, the viscous CL region ; TT, the 
unsteady CL region (in IF3' the cubic nonlinearity is the principal one put in the quintic 
nonlinearity dominates). The thresholds of nonlinearity are: 1 ,  A = (yLv)5 for the viscous CL; 2 ,  
A = (yL/v)i ;  and 3. A = y i  for the unsteady CL (Here 7- 1 = O( 1 )  is assumed). 

- with a relevant measure represented by the linear-theory growth rate y, - ( i - J ) .  
On the (A,  y,) diagram (figure 1) this regime corresponds to Region I. The main 
results obtained in Paper 1 may be summarised as follows: 

(i) The evolution of disturbances in the regime of a viscous CL is described by the 
Landau equation (Landau & Lifshitz 1959) 

- = yLA+uA3.  
dA 
at 

Terms of higher order ( A 5 ,  A7,  etc.) can be neglected (except for a very narrow region 
of values of Prandtl numbers near 7 = 1) .  

(ii) The Landau constant a is fully determined by the interaction of harmonics 
inside the CL and does not depend on the flow structure as a whole. It is directly 
proportional to the Reynolds number ( a  = O(v-'))  and changes its sign when 11 = 1. 

(iii) Nonlinearity in the regime of a viscous CL is competitive (i.e. can affect 
substantially the developyent of a disturbance) throughout the entire range of 
variation of yL (0 < yL < uz). When q < 1, it  stabilizes the growth of disturbances 
a t  the level A = A ,  = O((y,v)$) and when 7 > 1 it  plays a destabilizing role: if 
A > A,, the amplitude increases with time as A - (t,--t)-~ until the CT, regime is 
changed. 

The regime of a viscous CL is realized only in a relatively small domain of the 
( A ,  y,)-diagram (figure 1). Let us define more precisely the boundaries of this domain 
and try to determine what the CL regime will be outside it, i.e. a t  sufficiently great 
supercriticality and (or) amplitude of the disturbance. 

To begin with, we consider the region of very small amplitudes in which linear 
theory holds true. If supercriticality is small, we have Region I (a viscous CL). With 
larger supercriticality (y, > d) ,  the unsteady scale 1, will exceed the viscous scale 
1, and the CL regime becomes unsteady. Let us now determine what the CL regime 
will be somewhat above Region I, i.e. with relatively small supercriticality (yL < v;) 
but a sufficiently great amplitude. To do this, we must consider how the three 
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scales ( 1 . 1 )  are competing. The nonlinear scale 1, will exceed the viscous one only 
when 7 > 1. In order to estimate the unsteady scale, we must remember that the 
disturbance can reach the upper boundary of a viscous CL only when 7 > 1, i.e. when 
nonlinearity contributes to growth rather than stops it. I n  this case, according to 
(1.2),  y - uA2 = O(A2/v )  and the unsteady scale has already become greater than the 
viscous one when A > v4, i.e. a t  a much smaller amplitude than required for the 
regime of a nonlinear CL to set in. Consequently, above Region I the CL will also be 
an unsteady, rather than, as stated in Paper 1, nonlinear one. This more accurate 
definition does not alter the results obtained in Paper 1 for the regime of a viscous 
CL but only bounds the region of realization of this regime by a somewhat smaller 
amplitude than we believed earlier. 

Thus, the region of a viscous CL is adjacent only to the region of an unsteady CL 
(see figure 1 ) .  Therefore, it would be logical to study how the nonlinear development 
of disturbances in the regime of an unsteady CL occurs, and this will be the subject 
of the present paper. Most of the paper is devoted to deriving the nonlinear evolution 
equation. Brown & Stewartson (1978) were the first to derive such an equation for 
the regime of an unsteady CL (with a somewhat different formulation of the 
problem). Unfortunately, the assumptions made in the derivation of i t  restricted the 
validity range to  the very initial stage of development of the disturbance. We have 
been able to generalize the problem formulation and derive a nonlinear equation that 
is valid for describing the entire process of evolution up to amplitudes of order unity. 
A rather simple analysis ($3) shows that nonlinearity, as in the regime of a viscous 
CL, is fully determined by the interaction of harmonics inside the CL and does not 
depend on the flow structure as a whole. Consequently, all results obtained will be 
justified for a very broad class of flows and not only for the particular model that we 
have chosen to ease the calculations. 

In  complete form the nonlinear evolution equation is a series in A2/h3 ,  where h is 
the CL scale, and may be written symbolically as 

zn dA 
dt 

- = y , A + C  h3n 
n=l 

(In fact, in the regime of an unsteady CL the right-hand side is non-local in time, i.e. 
depends not only on the instantaneous value of amplitude but on the whole 
preceding evolution.) Until the CL becomes nonlinear, h % 1, = At,  i.e. A2/A3 is the 
small parameter, and this allows us to  neglect nonlinear terms of the highest order. 
In particular, in the regime of a viscous CL ( A  = v;) this immediately leads to 
equation (1.2), as long as the Prandtl number 7 + 1. 

In the case of an unsteady CL ( A  = y ) ,  however, equations describing a solution 
inside the CL, possess a certain symmetry (see $3), by virtue of which, in the first 
approximation, c2 = 0. (Note that in the regime of a viscous CL, this same symmetry 
arises when 11 = 1 . )  The symmetry is an approximate one and there are a number of 
factors that break it. Among them, the strongest factor (for 7 =+ 1) is associated with 
dissipative processes, namely the viscosity and heat conduction. With their inclusion, 
we get 

Thus, in the regime of an unsteady CL, we must leave two nonlinear terms in the 
nonlinear evolution equation (with the remaining terms neglected) : 

-- - yL A + (7- 1) vb, e6 A3+b,  c6 A 5 ,  d A  
dt 
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where b,  and b, are the coefficients, and fl, are certain non-local (integral) operators 
that  correspond - in a rough approximation - to time integration ; for estimation we 
may assume f = O(y) .  It should be emphasized that in the nonlinear stage of 
development of disturbances it is not possible to identify y with the linear increment 
yL because, as a rule, y 9 yL. 

Let us now define the ‘spheres of influence ’ of each of the nonlinear terms in (1.3) 
as well as the boundaries of the unsteady CL region. Comparison of nonlinear terms 
shows that when A < vi the main contributor is the cubic nonlinearity (Region 11(3) 
in figure l),  while when A > v: it is the nonlinearity A5 (Region 11(5) in figure 1 ) .  
Another indicator of ‘influential degree ’ for nonlinearity is its competitive ability, 
i.e. its ability to compete with the linear term y L A .  It is clear that for a very small 
amplitude the nonlinear terms are not competitive and the disturbance grows 
exponentially with growth rate yL;  in this range r = yL. Cubic nonlinearity becomes 
competitive when 

(1.4) 

However, if yL > vl, then the second nonlinear term becomes competitive still earlier, 
when 

A rv Ah3) = y\ v-t. 

A = yi, (1.5) 

and i t  will precisely determine the nonlinear evolution of the disturbance. The 
boundary separating the regions of linear and nonlinear evolution (it is natural to call 
i t  the threshold of nonlinearity) is depicted in figure 1. Segment 1 of i t  lies in the 
region of a viscous CL, segment 2 corresponds to (1.4), and segment 3 corresponds to 
(1.5). 

We already know the boundaries of the unsteady CL region ‘from below ’, i.e. for 
Region I. The boundary ‘from above’ is reached when at least one of the inequalities 
A < 1,  y < 1, and A; < y is violated. Failure to satisfy the first two of them means 
that the evolution regime has become strongly nonlinear and the perturbation theory 
underlying our analysis no longer is applicable. Violation of the last inequality would 
mean transition into the regime of a nonlinear CL. It is easy to see that such a 
transition is not realized. As a matter of fact, according to (1.3),  in Region 11(3) in 
which cubic nonlinearity is dominant, A < v$ and y - (vA2)’ AS 9 A:. In  Region 
IS5), however, we have y - A? %- A:. 

I n  summarizing the foregoing, let us formulate two major conclusions. 
(i) Growth of small disturbances in a weekly supercritical, stratified shear flow (in 

contrast to unstratified flows, see e.g. Churilov & Shukhman 19873) does not lead to 
the formation of a nonlinear critical layer. In  other words, only two regimes of CL 
are realized, namely viscous and unsteady. 

(ii) Within the framework of a weakly nonlinear ( A  < 1 )  theory the evolution of 
a disturbance is fully described (outside the region of a viscous CL) by (1.3).  This 
means that (1.3) involves all required terms, each of which (in its respective region) 
has an essential influence upon the development of the disturbance, and the addition 
of other terms ( -  A’, for example) merely provides small corrections. 

I n  this paper we shall consider the nonlinear evolution of disturbances in Region 
11(3) (cubic nonlinearity) and in Region 11(5) (quintic nonlinearity) and on combining 
the results with those obtained in Paper 1 we shall obtain an overall picture of 
perturbation development in a weakly supercritical stratified shear flow. 

The paper is organized as follows. In  $2 the problem is formulated and a brief 
account of the outer solution is given. I n  $ 3  the inner solution is derived as well as the 
evolution equation, and its analysis and solutions for different cases are considered 
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in $4. A discussion is given in $5.  Appendix A contains calculations supplementary 
to those in $3, and Appendix B t  gives in explicit form the unwieldy expression for 
the kernel of the amplitude equation for the case of quintic nonlinearity. 

2. Problem formulation and the outer solution 
As in Paper 1, we use for calculations Drazin’s model (Drazin 1958) in which the 

velocity u, along the x-axis and the density p, depend on the vertical coordinate 
y : uo = tanh y, p = poo -9. In  Boussinesq’s approximation the initial system of 
equations takes the form 

-A$-J-+{A$,$} a aP = vA2$ = ~ K A ~ $ ,  
at ax 

I 
Here we use the notation of Paper 1. The neutral stability curve in the inviscid limit 
is described by J = J ,  = k2(1 - k2) (Drazin 1958) and has a maximum J = 2 at 

We consider a weakly supercritical flow a t  large Reynolds number ( v  4 1 , ~  = O( 1)). 
The unsteady CL regime occurs from above and to the right of the viscous CL region 
(see figure 1). In  order to have linear theory as a starting point, we suppose a t  the 
beginning the supercriticality to be large enough (yL > d )  and then extend the 
results obtained to  the region above the viscous CL (yL < d ,  

k 2 = 1 $  2’ 

A > vg). 
Let us introduce the evolutionary time 7 = ,ut and put 

1 
4 J = - + p J ( l ) ,  v; 4 ,u < 1 (J‘” < 0). (2.2) 

Let tz be a small parameter characterizing the magnitude of perturbation : A = EB. 
Bearing in mind the derivation of the evolution equation, which is valid when the 
amplitude is smaller, of the same order as, and greater than the threshold of 
nonlinearity, we must do such scaling of the small parameters E ,  K ,  and ,u that  permits 
the linear term to be compared to the non-linear one. One needs to distinguish two 
cases : ( a )  cubic nonlinearity and ( b )  quintic nonlinearity. According to estimates 
reported in $1 (and as will be apparent from the subsequent calculations), one must 
suppose that 

in the case of cubic nonlinearity y = O(KE*/ ,U~) ,  and 
in the case of quintic nonlinearity ,u = O(tz4/,u6) 

Now we formulate the boundary and the ‘initial’ conditions. It is our intention to 
investigate the time development of perturbations. However, the problem of 
nonlinear evolution of an arbitrary initial perturbation is though to be a very difficult 
one and therefore we restrict ourselves to the problem of an ‘eigenmode’ evolution. 

Let an initial amplitude be very small such that linear theory is applicable. Then, 
in a time t - y-l an exponentially increasing eigenmode with k2 = (the fundamental 
harmonic) becomes prominent and free oscillations with other k are damped. To 
investigate the subsequent perturbation evolution within the framework of linear 

t Appendix B is available from the Journal of Fluid Mechanics Editorial Office. 
$- Strictly speaking, when dissipation factors are taken into account, the neutral stability curve 

is slightly deformed (a distortion of O ( u ) ) .  However, this effect is unimportant for the processes 
concerned, with typical times less than v-l (see also Paper 1). 
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theory, one can proceed in two ways. On the one hand, the coordinate dependence 
of the eigenfunction can be taken as an initial condition (this is a ‘restricted’ initial- 
value problem) ; and on the other, one can assume that only this mode has existed 
in the past (up to t = - co). The result will evidently be the same. 

In the nonlinear theory we cannot solve even the ‘restricted ’ initial-value problem. 
Indeed, as the fundamental generates the forced oscillations in other harmonics 
k, = Ik ( I  = 0,2 ,3 ,  ...) we must set at 7 = 0, in a self-consistent manner, the spatial 
structure not only of the fundamental but also of all other harmonics. To avoid this 
difficulty we choose another way, namely we shall assume that the perturbation 
develops ‘from nothing’, i.e. that  the amplitude is equal to zero at T = - co. As the 
boundary conditions we take a periodicity in x: 

m m 

$ = In (cosh y) + C $1(7, y) eilks, p = poo - y + C pL(7, y) eiLkX; ( 2 . 3 a )  
l--m l--ai 

and a finite extent in y: 
$ , + O ,  pl+O as y+.+co. (2 .3b )  

Here evidently $-, = gl, p-, = p, and the overbar denotes complex conjugation; 
k = 2-a. 

The general scheme of calculations is the same as in Paper 1 .  For a cubic 
nonlinearity one needs only the fundamental ( I  = l ) ,  the second (I = +2)  and the 
zeroth ( I  = 0) harmonics. For quintic nonlinearity one needs the third ( I  = +3)  
harmonics also. Equations (2 .1 )  are solved separately for the outer region and for the 
inner one (CL), and the solutions are then matched. 

The outer solution is in fact the same as in Paper 1 .  For this reason we present only 
a summary of results. 

The fundamental of the outer solution is calculated in the form of an expansion : 

The function $il) is a solution of the Taylor-Goldstein equation 

L, = 0, 
a 2  

- ay2 L - - - [ (1k)2-2 sech2y-$ cotanh2y], where 

and is the neutral mode of the linear problem 

(the +signs refer to y 2 0, respectively; matching to the inner solution yields 
B- = -iB+, which corresponds to the indentation rule from below). Then, perturba- 
tion theory is invoked to calculate $i2), $i3) and the required iterations $o, $z, 
and $3. 

These calculations rely on the process of ‘harmonic generation’, that is the 
fundamental being of O(s) generates owing to the nonlinearity the zeroth and second 
harmonics of 0 ( s 2 ) ,  an interaction with which will contribute to the fundamental and 
third harmonics of O(e3), etc. The thus-obtained part of the outer solution is a series 
in integer powers of E where only even harmonics are involved a t  O(sZn) ,  whereas only 
odd harmonics appear at O ( P + l ) .  

The other part of the perturbation comprises contributions each of which is a 
solution of the homogeneous equation for the corresponding (Zth) harmonic 

4 $ 1  = 0 (2 .6 )  
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which satisfies the boundary conditions (2.3 b) .  Generally speaking, when y > 0 and 
y < 0, the solutions of (2.6) are different functions (we denote them as r$;) which are 
impossible to match together (if I =I= k 1 )  with the help of the indentation rule from 
below because none of the harmonics, except for the fundamental, is an eigenmode. 
Therefore such contributions appear in the outer solution only in that order when it 
is  required by matching with the inner solution. In the problem of concern here such a 
contribution will be needed for the second harmonic. If, however, 1 = f 1 ,  the 
relevant contribution has the form d$, = d*$a, and the inner solution determines it 
only up to a term proportional to $$l). In  order to avoid such an ambiguity in the 
definition of wave amplitude we require orthogonality of and 411) : 

Hence, subject to the above-mentioned relation B- = -iB+ we have d- = id+ (i.e. 
indentation of the singular point from above). 

Thus, the harmonics are calculated in the form of expansions : 

$,-, = €'$g' + €'K$r' + . . . ; $, = fZ21(IP' + €2K$i2) + C * @ $  f . . . ; $3 = €'$?' + . . . , 
and similarly for p. When y --f 0 the asymptotic representation of $$ in the general 
case has the form 

where q' are real numbers (because of the symmetry of the chosen flow model we 
have q+ = q-). In  view of this, we obtain an asymptotic representation of the outer 
solution as y + 0 (y = p Y ,  and pL = - 2dpL f ay ; for details of the calculations see Paper 
1 )  which is required for matching with the inner solution: 

the fundamental 

+$ -I& (In (tIyI)+q*), (2.7) 

(here /1 = ln($,u\YI)); 

the zeroth harmonic 

the second harmonic 
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as well as a modified solvability condition (MSC) (Paper 1) 

(2 .11 )  

(2.12) 

which follows from the boundary conditions (2.3b) at O(C,U) of the expansion (2.4). 
Here uy)', bi2)', c * ,  and d' are unknown coefficients which are determined by 
matching with the inner so1ution.t The MSC (2.12) is the initial expression for the 
evolution equation; one of the objectives of this paper is to derive this equation. 

3. The inner solution. The derivation of the evolution equation 
The main purpose of this Section i s  to calculate by)' and thereby obtain the 

amplitude equation from the MSC (2.12). One can easily establish the asymptotic 
properties of that iteration of the inner solution in which the bi2" will be determined. 
In view of (2 .8)  it  is the fundamental harmonic iteration which has the term 
m'Yt ln(&Y) in its asymptotic (as Y +  ~ C O )  expansion. Then the matching 
provides 

In  other words, we obtain the evolution equation in that order of perturbation where 
we first have m+ $. m-. 

For obtaining the inner solution we change to the variable Y = p-ly and the 
functions Y and @ :  

(3 .1)  B+(6(2)+ + b(2)- ) = -(m+-m-). 

$b = p Y 2 +  Y, p = poo-pY-2p-'Py,  @ = Y - P .  

The equations for Y and @ obtained from (2 .1 )  take into account a number of 
different factors : nonlinearity, supercriticality, and dissipative processes. For each of 
these factors we retain only the main term due to it and omit the other terms. This 
procedure yields 

(3 .2)  
fiy = *@, -pP2{ yy, v* -2pJJ(')( y,- @%) + 7Kp-'yyYy, 

fi@ = - P - ~ { @ ~ ,  y3*-2pJ (') ( ~ ~ - @ x ) + K p - 3 @ y y , + ( ~ - l )  K , U - ' ~ y y y , )  

a 
ay 

9=-, {a,b}*-a,b,-a,b,, where 

and the subscripts denote differentiation with respect to  the relevant variable. The 
solution is constructed by analogy with (2.2) in the form of a Fourier series in x. Each 
harmonic is represented as an expansion : 

y, = yy) + C3p-% yr) + cpt Vf) + CKp-a p:) + C'Kp-7 11 yy) + C5pPu 2 + . . . , 
yo = C2p-l yhl) + €2Kp-4 ylCz) 0 + C4pP4 y(') 0 + . . . , 
y2 = €2,L-1 yil) + C2K,UP4 yp' + C4pP4 y!j3' + , . . , 
Y3 = " p - ~ Y p  + . . . , 

and similarly for @. 

coefficients of 'free' solutions cf and d* is still to be determined by matching. 
t Note that the coefficients and biz)* have a known order (O(1)) while the order of the 
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I m t i  Im u 

arg t = - 2 x  
L. f .  - + Rer - O L  O L  

arg t = 0 

(b) (4 

arg u = -2n 
- - = Reu - =J 1 

a r g u = o  

FIGURE 2. (a) contour C;  (b) contour L. 

The subsequent calculations are based on the solution of equations of the form 
RF = R which is considered in detail in Appendix A. Therefore, in appropriate 
passages we shall give the results only, without going into details. 

3.1. O(c,ui) of the fundamental 
On writing 

A,=  -+iklY 9- t 7  1 iikl, 

we have ,. 

A solution of these equations which matches to (2.8) is 

N, Yp)-+ik@p) = 0, N, @il) = 0. 

Contour C is shown in figure 2(a) .  The function “(7 ,  Y )  has a single asymptotic 
representation in the lower half-plane ( - .n < arg Y ,< 7c) of a complex Y as 1 Y I + co : 

(3.4) 

from which it is evident that B(7) is a wave amplitude (see (2.8) and (2.5)) and 
B(7) = B+ = iB-. The evolution equation will be obtained just for B(7). For the 
moment, however, it is an arbitrary function that satisfies the requirement B(T) + 0 
as 7+-co .  

3.2. O(e2pL-l) of the zeroth harmonic 
Equations (3.2) give 

W ( 7 ,  Y )  = B(7) Y$+ O( Y-”), 

a a 
ar a7 

Yg) = 21W’I2, @g) = 0. 

- yp)’ = ik(Wv’- c.c.)’, - @g)’ = 0. 

From here on, the prime denotes a derivative with respect to Y. The solution which 
matches to (2.9) is 

3.3. O ( E ~ , ~ - ~ )  of the second harmonic 
N2 e) = ik@i1) + ik(W”W - w”), A, ~ p )  = 0. 

Reasoning along similar lines as in Appendix A, i t  is easy to  see that because the 
right-hand sides do not involve and its derivatives, the solution has a single 
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asymptotic representation (from here onward, as IYl+ co in the lower half-plane 
of a complex Y )  which, subject to (3.4), is 

B2 

6Y YC) IV-+( m i ’ ) l n ( ~ Y ) + n ~ ’ ) ~ t + . . . ,  ~ $ 1 )  = 2mil )~a+ .... 

Comparison with (2.10) indicates (P  = Y - @ )  that  matching requires that 
c* = e2p-b:. Hence we obtain 

c: = mp), c; = -im(1) , ~ : q +  = nF), c;qp = - in(1) - xmp), 2 

which yields the equation rnil’q- = (q+-iix)m!$, and because q’ is real its unique 
solution will be mi1) = 0 (and c: = nil) = 0). 

Thus, we have @il) = 0. Using (3.3) as well as formulae reported in Appendix A we 
obtain 

!Pi1) = - 32x I. ds, Ic ds, Ic ds, B(7 - s1 - s,) B(T - s1 - s3)(s2 s3)-;(s, + s,); ik 

x (28, + 8, + s3)-t(s, - s3)2 e-ikY(2si+sz+sa). 

Upon changing to the variables t ,  = s, + s, and t ,  = s1 + s3 and integrating over sl, we 

ik O0 

have 
!Pi1) = lo dtlIc dt, B(7 - t,) B(7 - t 2 )  ti  t& + t,)-;(t, - t,): 

where F(a ,  b ;  c,  z )  is a hypergeometric function (Abramowitz & Stegun 1964), 

1,  2 > 0, { 0, 2 < 0. 
e(x)  = 

3.4. O(e3,&) of the fundamental 
The system (3.2) of this order yields 

Nl yy’ = i i j q )  + ik( y$l’”w - Y(”1”W’ + 2 yi1’W”- y(y’”‘w’- 2 yp)”jq7) 

A, = 0. 

0 

= $ik@y) + ikRy), 

The function Ri2) involves W and, therefore, does not have a single asymptotic 
representation. Nevertheless, @y) = 0 because the expansion of $a as y + 0 does not 
involve the term -Iyl;ln(+lyI). The equation for Yy) has a solution (contour 
L is shown in figure 2 6 )  

or, in explicit form, 

‘r x ( t , t 2 t , ) - ~ ( t 3 - t 1 - t t , ) ~ ( t , - t - t 1 - t t , ) - ~  t , [ t , ( t , - t t , ) 2 + t 2 ( t 2 - t 3 ) 2  

+ t ~ t ~ ( 2 t 3 - t l - t t , ) l - t ~ t 2 ( t l  + t , ) - ~ ( t , - t 2 ) ~ ( t , + t 2 + t 3 ) ( 2 t 3 - t l - t 2 )  
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The asymptotic representation as Y + & co(arg Y < 0) 

yp = Dp’yt+O(y-;) (q%+-D(Z)- * 0) 

is such that it is impossible to obtain a t  this order non-zero biz)& (see ( 2 . 8 ) )  because 
there is no term of the required form ( - Yiln($Y)). Therefore, the strongest 
nonlinearity does not contribute to the evolution equation. 

A simple analysis demonstrates that the absence of the term - YiIn($Y) in 
asymptotic representation is due to the fact that @ = 0 throughout the iteration 
considered. If we omit in (3 .2 )  terms responsible for dissipation (or take the Prandtl 
number 7 = 1) and supercriticality, i t  is clear that  @ = 0 is a solution. This is the 
result of the same symmetry that has provided in Paper 1 the change of sign of the 
Landau constant a t  7 = 1.  This symmetry is an approximate one and there are a 
number of factors breaking it. First, these are the supercriticality and the dissipative 
effects. As they are represented by respective terms in (3 .2 )  we call them the inner 
factors. Secondly, @ may become non-zero if this is needed for matching to the outer 
solution. This is the outer factor. The linearity of the operator A allows us to consider 
the contribution of each factor separately. 

3.5.  O(.& of the fundamental 
The addition to the fundamental due to the supercriticality is described by the 
equations 

A, Pi3) = +ik@i3) - 2ik J(l)W, 

Nl = - 2 i k P ) ~ .  

Their solution is obtained using the procedure described in Appendix A and has a 
single asymptotic representation : 

lpy = - l J ‘ 1 ’ f q 7 )  y’ 2 In2 ($u) - 2 ~ ( , ) ~ ( 7 )  Y;  In ($Y) + O ( Y ~  In2 ($Y)) ,  

@y) = -22f(’)B(7) Yi In (&Y) + O( Y-t In ( b y ) .  

Matching to (2 .8 )  provides the linear-in-B contribution to bi2” 

B(bi2)f + b @ - ) ,  = id(’)B (3 .7 )  

(this is marked by subscript L) which determines the linear growth rate due to 
supercriticality . In  principle, the harmonics generation will give rise to a nonlinear 
contribution to by)’ proportional to J(l), but it will be small compared with (3 .7 )  and 
cannot provide a competitive nonlinearity. 

Thus, there are still two factors breaking the symmetry @ = 0 and, consequently, 
two ways of searching for the competitive nonlinearity : (i) the ‘dissipative ’ one 
which provides a cubic nonlinearity and (ii) the ‘non-dissipative ’ one which provides 
a quintic nonlinearity. 

(i) Cubic (‘dissipative ’) nonlinearity 
Here we calculate the contribution to bi2)* due to the second inner factor, i.e. to 
dissipative terms on the right-hand sides of ( 3 . 2 ) .  

3.6 (i). O ( s ~ , d )  of the fundamental 
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Using the obvious relation 0 = g3N1 W = N, W”’+ 3ikW”’ we can easily integrate 
these equations, and after matching to (2.8) we obtain 

3.7(i). O ( e 2 ~ ~ - 4 )  of the second harmonic 

N2 yp) = ikQ(2) + ~ 57+’ ( 2 W ’ W i v - - w w v - - ” W ~ ~ ’ ) + 7 y ~ ) ’ ~ ~ ,  

Nz @p = g(7 - 1)( W’W’” - WW”) + (7 - 1) Y y .  
18 

For further analysis we need @iz) only. Its calculation is similar to that of Yil) and 
provides @‘ 2,  - - m k 3 [ 0 m  1 9 2 ~  d t , ~ c d f 2 ~ c d t 3  B ( 7 - t 1 - t 2 ) B ( 7 - t 1 - t 3 ) ( t 2 t 3 ) - ~ ( t 2 + t 3 ) ~  

X ( 2 t l + t 2 + t 3 ) ~ ~ ( t 2 - t 3 ) 2 [ ( t 2 - t 3 ) 2 ( t 2 + t 3 ) + ( 2 t l + t 2 + t 3 ) 3 ]  

e-ikY(2t,+t,+t,) (3.9) 

3.8(i) 

a - 1  - . 

at 3 
-@p’ = I?---(WW’”+c.c.)’+(7- 1) YP)’l’. 

Integrating once with respect to Y we have 

3.9 (i). O(S~K,L-+) of the fundamental 

At this order we must obtain the cubic-in-B contribution to  biz)*. Let us write 
equations in concise form: 

3, Yi5) = 3k@i5) + R(5) 1 ,  a, @is) = R‘,5) 

For deriving the evolution equation we need the asymptotic representations of @?) 
and q5) as Y --f i: CO, or more precisely the coefficient a t  Yi In (&Y) in the expansion 
of P:) only. It is easy to see that R?) and R!j5) are localized and (A 13) and (A 14) are 
valid in this case. According to these, as Y +  ~ C O  

P:) = G* yf+ D* Y$ In ( ~ Y )  + o ( Y - ~  In (&Y),  

(3.11) 
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3.i’(ii). O ( E ~ , L - ~ )  of the zeroth harmonic 
In fourth-order iterations in amplitude we have to calculate only the corresponding 

contributions to @. In  the case of a zeroth harmonic, equations obtainable from (3.1) 
are not interrelated so that  Y and @ can both be calculated and matched separately. 
The equation for 0, 

has a solution @b3)” =f( Y). The difference off(Y) from zero is equivalent to choosing 
another density profile of an unperturbed flow ; this will not affect the final result (the 
nonlinear term), however. Hence, without any loss of generality, we letf( Y )  = 0 and 
q . 3 )  = 0. 

3.8(ii). O(e4pP4) of the second harmonic 
The equations that follow from (3.2) can be written conveniently as 

N, Y f )  - ik@i3) = ikR, = ik(Rll + R,, + R,,), 1 
(3.18) 

A, @p = 0, I 
where R,, = ‘I/:2)”W-2yy)’J4”+ F:)W’’ R 02 - - 2(’J”’’y(l)- 2 y(l)’Y(l)’), 0 2  

R = 3 yF’Jj7” - 2 y(WJj7’ - y(WJj7. 
31 3 3 

Let us write the solution as the sum !Pi3) = YpJ+ !Pi? of a particular solution 
(N2 Y!j$ = ikR,) and a general solution of the homogeneous system YrL. We obtain 

e3in/4 

YP2 = 4(2xkjt s, dt t-ilC(7 - t )  y2(t )  + D(7 - t)] e-2ilcYt, 

2mkt 
,L 

gm = $(g)-ln--- :in, m = 1 , 2 , 3  ,..., 

(3.19) 

where $ ( z )  is a digamma function (Abramowitz & Stegun 1964) and C(7) and D(7) are 
arbitrary functions which tend to zero as 7 --f - co (for details of the calculations see 
Appendix A). As Y +k 00, 

yFi = MkY’ 2 + O( Y-t), 

It i s  easy to  see that the particular solution does not match to (2.10) and, therefore, 
should be added to it. Hence, the asymptotic representation of !Pi3) has the 

form yr) = [C(7) 1n(&Y)+D(7)+Mk(7)] ya+O(y-~1n(&Y) 

For matching, in (2.10) it is necessary to put c+ = e4p-”C,’. We obtain 

ciq+ = D(7) +H+(7) ,  c: = ic; = C(7), iciq- = D(7) + M - ( 7 )  - inC(7), 

whence 
M+-M- 

C(7) = 
q+ - qP -in 

(3.21) 
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As has been pointed out previously, in view of the symmetry of our model we have 
q+ = q - ;  therefore 

C(7) = - ( M +  -M-)  (3.22) 
i 
7L 

which, together with (3.19) and (3 .20) ,  fully defines @?) + 0. 
Thus, it is the matching to the outer solution that has led to breaking the 

symmetry 0 = 0. As a result, in the next iteration (of the fundamental), the right- 
hand side of the equation for @ will already not have a single asymptotic 
representation, and this will lead to a nonlinear contribution to the evolution 
equation. 

In  accordance with (3.18), it  is convenient to write 

M+ -M-  z= (M+ -M-)ll + (M+ - M - ) 0 2  + (M+ - - J L - ) ~ ~ .  (3.23) 

Simple but cumbersome calculations yield 

x B(7- t-t,) B(7 + t + t ,  + t ,  - t 4 )  

x B(7-t- t4)( t1t2 t , ) - ~ ( t 4 - t 1 - t t , ) + ( t 4 - t - t 1 - t 2 ) ~  

I x O ( t , - t , )  B(t,-t,-t,-t) dzzi(1 -z2)-%(z-x), 

t , - t - - t l - t t ,  ' 
t 

z =  

( M  + - M - ) o ,  = ($r einl4 J: dt J: dt, Jc dt , jc dt, B( 7 - t - t , ) B (7 - t - t , f 

( 1 : ZJ x ( t l  - t2)i(2t + t ,  + t Z ) ( t l  + t, + t )  F --, --; -. 2 

x O( t4-2 t - t1- t2)O( t1- t z ) ;  (3 .25)  

X B(7- t - t2- t3)B(7+t+ t,+ t ,+2t,- t4)B(7-t-t4)(t t1)t t , i t ,s  

x ( t ,  - 2t - t ,  - t ,  - 3t3)-g(tl + t2)-g(tl - t2)i(t4 - 2t - 3t3)4(t, - 2t)-: 
x (t,-2t-22tl-2t,-33t3)(2t4-44t-33t,-33t,-66t3) 

(3.26) 
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3.9 (ii). 0 ( ~ 5 , d )  of the fundamental 

A t  this order we must obtain the quintic-in-B contribution to bi2)+ .  The equations 
resulting from (3.2) can be written in concise form 

&fl uy) -lik@(6) = R 
2 1  1' 

&fl @?) = - ik( @i3)"T + 2@p'w') - ikR. 

The asymptotic representation of p:) is calculated rather simply : 

y l : 6 )  =my)kyf+NkY'  2 l n ( ~ ~ ~ ) + O ( Y - f l n ( ~ u Y ) ) ,  

where 

Using (3.3) and (3.19) we find 

and obtain 

N+-N- = __ ''kt ePinl4 [ dt tiC(7 - t )  B(7 - 2t), (3.27) r2(3 
where T(z) is the gamma-function. Therefore, according to (3.1), the quintic 
contribution to bi2" is 

B(by'+ + bi2)-)N5 = - (N+ -If-), (3.28) 

where, according to (3.27) and (3.22), we have 

The jump M+-M- is defined by formulae (3.23)-(3.26). 
Analysis of the arguments of the amplitude functions in (3.24)-(3.26) shows that 

in each expression, only three of four arguments are independent. This allows us to 
write M+-M- in universal form: 

M +  -M- = ($r einI4 Jy  dt ti[: dzx  J: dy G(x, y) B(7 - t)  

x B(7 - Xt) B(7 - Xyt) B(7 - (1 4- x + XY) t ) .  (3.30) 

(In view of its awkwardness, the explicit form of the kernel G(x,y) is given in 
Appendix B.) Substitution of (3.30) into (3.29) and a little manipulation reduce (3.29) 
to the form 

The kernels H ( x ,  y, z )  and G(x,  y) are positive (see Appendix B). 
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So we have calculated three main contributions to by)* : a linear one (3.7), a cubic 
one (3.12), and a quintic one (3.28) and (3.31). Generally they are of different orders 
of magnitude (O(l) ,  ~ ( E ~ K ~ A - ~ ) ,  and O ( E ~ , L - ~ )  respectively) and which of them will play 
the leading role in the evolution equation is determined by relative values of the 
small parameters e, K ,  and y .  

When the amplitude of perturbation is very small (c + min I,uf, ( y 7 / ~ ) i ) ,  the linear 
contribution (3.7) will be a leading one and the MSC (2.12) will provide the evolution 
equation of thc linear theory, 

describing an exponential growth of amplitude. Sooner or later this growth will make 
one of the two nonlinearities become a competitive one. 

The cubic nonlinearity becomes competitive as A - ( , u ~ / K ) ~ ,  and the quintic one 
does so as A - pz. Therefore if ,u > K? the quintic nonlinearity becomes competitive 
earlier (at smaller A )  and the cubic nonlinearity will be small compared with i t  as the 
amplitude increases. The evolution in this case will be described by an equation that 
is obtained by simultaneously including the contributions (3.7) and (3.28) in the MSC 
(2.12) : 

- - k J‘ l ’B+N,  
dB 
d r  
- _  (3.32) 

x B(7 - xyt) B(r - 2xyzt) B(7 - (1 + x f xy - 2xyz) t ) .  (3.33) 

To derive i t  we must formally take E = pi. 

earlier than the quintic one and the evolution is described by 
At the smaller supercriticality (p < K:) the cubic non-linearity becomes competitive 

- = - kJ(1)B + __ ’- k6 1; ds s5 s,’ da aG(a) B(7-s) B(r -as) B(r - s-  as),  (3.34) dB 
d7 12n 

and for its derivation we must take E = ( , u ’ / ~ ) b .  But if in the process of perturbation 
development its amplitude achieves the A - K; level, the quintic nonlinearity 
becomes the leading one and for description of the further evolution equation (3.32) 
will be appropriate. 

4. The evolution equation: analysis and solutions 
Thus, we have derived the amplitude equation which ~ depending on the region of 

parameters - may have one of two forms. Let us return in (3.34) and (3.32) to the 
‘physical ’ variables t( = 7 / y )  and A( = sR) : 

- = y&+-- ’ - dA 
dt 12n 

f ds s5 1; d a  a C(a) A (t - s) A(t - as)  K(t - s - as) (4.1) 
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in Region IS3); and 

- = yL A + h j y  ds s5 1: dx j: dy 1: dx H ( x ,  y, z )  A (t  - 8 )  A ( t  - sx) dA 
dt 

x A (t  - SXY) A(t - BSXYZ) K(t - (1 + x + XY - BXYZ) S) (4.2) 

in Region II(5). Here yL = k ( i -  J )  is a growth rate of linear theory, and h = constant. 
Now we discuss the properties of the equations and solutions obtained. 

4.1. Cubic nonlinearity 

(i) As the nonlinear term in (4.1) is fully due to the harmonic interaction inside the 
CL, it does not depend on the arrangement of the flow as a whole, i.e. on the choice 
of the flow model. The flow model determines only the value of the wavenumber k 
and the coefficient in the relation between the growth rate yL and the supercriticality 
( f - J ) .  A similar situation occurs in the case of a viscous CL (see Paper 1). 

(i i)  Equation (4.1) is invariant to the translation in time t --f t + to (this property is 
evidently due to the character of the problem, i.e. to 'switching on' the perturbation 
at t +- 00) .  Therefore (4.1) will have a variety of solutions which can be obtained one 
from another by the translation in time. At the initial stage of the perturbation 
development where the nonlinear term in (4.1) may be neglected, the solution is 
A = A,  eYIJt. By a suitable choice of A ,  we fix the time zero and thereby the unique 
solution. 

Equation (4.1) may be reduced to a 'universal' form that does not depend on 
A,. Let us put 

A ( t )  = A,b(t)  eYLt 

Then, b(t)+ 1 as t+--co. Now, we introduce the 'logarithmic' time 

and considering b to be a function of T we obtain the equation 

together with the initial condition b(0 )  = 1. Here 

[=sgn(y- l ) ,  K ( v )  = o G ( a ) ( l + ~ ) - ~ .  

(iii) Equation (4.1) is an integro-differential one in contrast to those usually 
encountered in the theory of nonlinear stability of shear flows. Apparently, such an 
equation arises inevitably when the nonlinearity is a competitive one in the unsteady 
CL regime (see also Hickernell 1984). The rate of the amplitude variation is 
determined in this regime by the whole history of the perturbation development 
rather than by the instantaneous amplitude magnitude. This makes it too difficult 
not only to search for the solution but also to determine its asymptotic properties. 
Generally, the analytical methods of investigation such an equation are very much 
restricted and we need to use numerical calculations. 

Now, let us consider qualitatively (as far as it is possible) the behaviour of the 
solutions of the evolution equation (4.1). 



206 8. M .  Churilov and I .  G. Shukhman 

The $rst stage : non-competitive nonlinearity 
At the initial stage (for large negative t) the linear term dominates in the right-hand 

side of (4.1). The amplitude grows exponentially and the nonlinearity provides only 
small corrections to this law. Substituting A = A, eyLt into (4.1) we obtain 

_ -  - y L A  +aA3,  
dA 
dt 

where the Landau constant a is 

In  the case of non-competitive nonlinearity a may be calculated using essentially 
rather simple calculations compared with $3. We have done so with the purpose of 
controlling the expression for the kernel G(cT). These calculations show that two 
equalities must be satisfied (for the zeroth and the second harmonics respectively) : 

JK, (n )  d r  = ‘(9-%), J;K,(g)  d a  = - 1 55x 80 . 
0 20 20(  16 9 )  

HereK,(c) = a%,(a)(l +cT) -~ ,  m = 0,2;  G,(a) are defined by (3.16). Unfortunately, 
we were unable to calculate these integrals (and thereby run a check as described 
above) analytically. That is why this integration has been made numerically and has 
verified the correctness of formulae (3.16) for the kernel of the evolution equation. 

The numerical calculation demonstrates that  K O  < 0 and K, > 0 for 0 d a < 1 and 
their sum (i.e. K ( a ) )  changes its sign a t  CT = 0.45 (figure 3). The integral J,1Kdc > 0 
and therefore the Landau constant is a positive one when 7-  1 > 0 and is a 
negative one when 7-  1 < 0. Note that the nonlinear evolution equation for the 
viscous CL regime obtained in Paper 1 has the same property. One can consider the 
nonlinear equation (4.1) as a ‘continuation ’ of the ‘viscous’ evolution equation 
mentioned above into the domain yL > us. 

However, there is an essential distinction between these two equations. In a 
‘viscous’ equation the nonlinear term is an algebraic function of A(t) and therefore 
its magnitude is determined only by the instantaneous value of the amplitude and 
its sign is determined by the sign of (7-1). That is why the character of the 
perturbation evolution can easily be predicted in this case: namely, if the sign of 
(7 - 1 )  is stabilizing, the amplitude tends to some constant value; otherwise, the 
amplitude growth is accelerated more and more and finally becomes a ‘burst-like’ 
one. But in the unsteady CL regime both the amplitude and the sign of the nonlinear 
term are determined (except for the sign of 7-1) by the whole history of 
perturbation development, i.e. by the character of A(t) behaviour and, in addition, 
there is competition between the ’near past’ and the ‘remote past’ owing to the 
alternating-sign nature of K ( r ) .  This results in the nearly total impossibility of 
predicting qualitatively the perturbation evolution. As we shall demonstrate belou , 

independently of the sign of (7 - 1)  the perturbation growth is unbounded, though its 
character depends on this sign. 

The third stage : the dominant nonlinearity 
Suppose that, the perturbation is so large that one can retain the nonlinear term 

only on the right-hand side of (4.1). A simple analysis demonstrates the possibility of 
a power-like solution A = A*(to - t)-z. (4.4) 
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FIGURE 3. The kernel of the nonlinear evolutionary equation (4.3), K(v) = K,(v) + K , ( r ) .  

Substitution into (4.1) yields 

x 1.7 x 10-4. (4.5) 

1-- l-- 
l + C r  

As I ,  proves to be positive (in spite of K ( a )  < 0 when v < 0.45) it follows from (4.5) 
that the ‘burst-like’ solution (4.4) is possible (i.e. A2, > 0) only when 7 > 1. It is the 
case in which the nonlinear term a t  the stage of a non-competitive nonlinearity 
demonstrates a tendency to destabilization. 

Thus the solutipn (4.4) can be considered to be a ‘continuation ’ of the ‘ burst-like ’ 
one ( A  - (t,,-t)-t) in the viscous CL regime obtained in Paper 1 in the domain 
vi < E (  < v;). At the transition from the viscous CL regime ( E  < vi) to  the unsteady 
one ( E  > d )  the ‘burst-like’ character of the perturbation growth is maintained and 
this growth is even accelerated. 

When 7 < 1. we have not obtained any analytic results. Numerical solution results 
are described in the following sub-section. 

The second stage : equipartition 
Now we investigate the most difficult case, where both terms on the right-hand side 
of (4.1) are equally important. For the numerical solution we take equation (4.3) 
which has a universal character and does not contain any parameter (except for the sign 

The numerical solution of (4.3) for 7 > 1 confirms the qualitative conclusion about 
a monotonic growth of amplitude and transition into the ‘ burst-like ’ regime (figure 
4). Indeed, the amplitude growth is unlimited as T +To(To x 41) according to  the law 
b(T) = 1.4 x lO’(41 -T)-S. 

When 7 < 1,  the character of the evolution is more complicated. It is easy to see 
that while as b(T) varies slowly enough (as it does a t  the initial stage), the main 
contribution to the integral in (4.3) is due to  x M 5 (i.e. to b(0 )  in fact). Consequently, 
the right-hand side of (4.3) is nearly constant (negative) for a relatively long time. In 

of (7- 1 ) ) .  
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FIGURE 4. The amplitude development with ‘logarithmic’ time for the Prandtl number 7 > 1 

A(T) = log,, (1  +Tilb(T)() sgnb(T). 

A s T + O , A - T f  

FIGURE 5 .  The same as figure 4 but for the Prandtl number 7 < 1 .  

view of this, b(T) changes its sign suddenly (at T x 1.3) and then grows in absolute 
value to be nearly linear in time. As time elapses, the character of the b(T) variation 
changes: b ( T )  begins to oscillate with a fast rising amplitude (figure 5) . t  After a 
few oscillations the amplitude rises by some orders of magnitude and becomes 
significantly greater than vi, and we already need to take into account the 
nonlinearity A5 (see the next subsection). 

t This does not mean that, when A passes through a turning point, the balance in the critical 
layer changes to a nonlinear one. One must simply redefine the measure of unsteadiness as 
y - 1A-l d2A/dt21f at  such a point (for example). 
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It is interesting to see how the streamline pattern changes when 7 < 1. Inside the 
critical layer there exists a region of closed streamlines under the separatrix with 
width d Y - &p-: (so-called ‘cat’s eyes’) so that as Y - d Y  the streamlines obey an 
equation &2Y2+epi[W(t, 0) eikz + C.C.J+ ... = const, 

or, with (3.3), 
3 -_ 

Y z - ~ c o s ( k x - + 7 c )  dss-:A(t-s)d:+ ... = const. (4.6) 
( x k ) r  s,: 

Dots denote the contributions due to the zeroth, the second and other harmonics. As 
A(t) oscillates for 7 < 1, the integral in (4.6) bccomes equal to zero from time to time 
and ‘cat’s eyes’ with the fundamental wavelength h = A, = 27c/k vanish. For a short 
time they are replaced by a pattern with the wavelength h = &lo (as Yi l ) ( t ,  Y = 0) is 
not zero a t  the same time) and then ‘cat’s eyes’ with h = ho are regenerated but 
shifted by one half-period with respect to an initial position so that the ‘pupil’ of the 
new eye coincides with the corner of the old one. Far from the separatrix the half- 
period shift of a pattern takes place at other moments of time exactly when the sign 
of A(t) changes. 

Therefore the results of the numerical analysis demonstrate that for every Prandtl 
number 7 the nonlinearity sooner or later becomes dominant and the amplitude 
grows with no limitations (in a monotonic manner when 7 > 1 and with oscillation 
when 7 < 1). 

Let us discuss now the frames of validity of (4.1). Strictly speaking, (4.1) is derived 
for the region y L  > vi where the CL regime is unsteady up to an infinitesimally small 
amplitude. That is why in this region of parameters we can formulate the initial 
conditions ( A ( t )  = ,4, eYLt, t +- 00) which determine the unique solution. However, it 
is virtually obvious that (4.1) also describes the evolution of perturbations above the 
region of a viscous CL, i.e. when 0 < yL << vf, E 9 v;, but one must delete the linear 
term from the right-hand side because the threshold of nonlinearity is already 
exceeded. However, i t  is impossible in this case to formulate the initial condition in 
such a way as to determine the unique solution. So, we know that the solution is 
described in this case by (4.4), but we cannot find to (it must be remembered that the 
perturbation reaches the upper boundary of a viscous CL region only when 7 > 1). 
To find to one must derive an equation that is valid in both regimes of CL and solve 
it with the ‘initial’ condition A(t) = A ,  eYLt as t+- 00. However, this task will not 
give essentially new information and hence is unjustifiably complicated. 

The results of the solution of (4.1) with cubic nonlinearity have an intermediate 
character since this equation is only a particular case of the complete evolutionary 
equation (1.3) (see $1) and it is valid when A < vi. The unbounded growth of 
amplitude a t  any sign of 7 - 1 found by us shows that sooner or later the amplitude 
will exceed this level and nonlinearity A5 will come into play. That is why the ‘ burst- 
like‘ phase (4.4) when 7 > 1 and oscillations when 7 < 1 are only an intermediate 
asymptotic of solution. 

4.2. Quintic nonlinearity 
Equation (4.2) does not involvc the coefficients K and v and may, therefore, be 
considered from two points of view, namely as being a full nonlinear equation in an 
idealized non-dissipative flow or as an equation describing an appropriate stage of 
development of a perturbation of an initially small amplitude as it exceeds the level 
A -, (I($). 

( i )  The nonlincar term in (4.2), as in (4.1) and in Paper 1, is due totally to the 
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interaction of harmonics inside the CL, hence (4.2) has a rather universal character 
and can readily be generalized to a broad class of solutions. The value of (q+ -q-)  here 
depends on the flow structure, except for the wavenumber k of the most unstable 
mode and the coefficient that relates the linear growth raLe yL to supercriticality 
a- J .  That value is zero for a flow with an antisymmetric velocity profile. (In (4.2) this 
dependence has been made apparent by incorporating the coefficient A for a flow with 
q+ $- q-,  whereas for the antisymmetric profile considered here, h = 2%7~-%r-2(i). 

(ii) As in the case of cubic nonlinearity and for the same reason the equation is 
invariant under the shift in time. 

(iii) Despite the still more complicated integral character of the nonlinear term 
in (4.2) as compared with (4.1), equation (4.2) -by virtue of the positive kernel 
H(x, y, z )  - is, in some sense, simpler than (4.1). Indeed, that H ( x ,  y, z )  is positive 
means the montonic increase of the perturbations (with a real, positive A) .  It is easy 
to reveal the asymptotic behaviour of the originally small perturbation. 

At the initial stage, as long as the amplitude is very small ( A  << y i )  nonlinearity 
gives only small corrections to the exponential growth A = A ,  eyLt, and the evolution 
equation has the form 

- = y,A +a,JAI4A, (4.7) 
dA 
dt 

where 

x 1.59 x 1 0 - 5 k 7 ~ ~ 6  > 0, 

Dd and IE are full elliptical integrals of the first and second kinds. Positivity of u4 
indicates that nonlinearity accelerates the growth. When the amplitude passes 
through the nonlinearity threshold A w O ( y i ) ,  the nonlinear term in (4.2) becomes 
dominant. It is a straightforward task to see that in this case the perturbation 
development acquires an explosive character and is represented by a power-law 

(4.8) 
expression : A = A * @ , - t ) f ,  

where 

and I ,  is equal to 

I 5  = J: d a  a5(1 - afi/: dx J: dy 1: dzH(x, y, z)[l - a(1 - x ) ] f ( l  -a( 1 - xy)]-i 

x [ i - - ( i - 2 ~ y ~ ) l - f ~ i + a x ( i + ~ - 2 y ~ ) l - ~  x 5~ lo-? 

The above picture of the evolution is realized in all flows with an antisymmetric 
velocity profile (where the CL coincides with the symmetry plane) as well as in a 
broader class of flows for which q+ = q- (see (2.7)). If, however, we have q+ $: q- (and 
such a possibility cannot, perhaps, be excluded from general considerations), then, 
as follows from (3.21), the coefficient appearing in (4.2) will be a complex one, 
argh = -arctan [ ( q + - q - ) / n ] .  The solution will be a rather complicated complex 
function; however, it seems to us that the qualitative character of the evolution 
can be established in this case as well (though with a lesser degree of confidence). 

Equation (4.2) (without the first term on the right) also has a power-law 
solution 

A = A*(t,-t)-f+Y (4.9) 
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Substitution in (4.2) yields the equality 

where 

dzH(x,y,z)[l-a(l-x)]-f+’@ 

x [l - cT( 1 - xy)]-:+i@[ 1 - a( 1 - exyz)]’-i@[ 1 + ax( 1 + y - 2yz)]f-’@, 

which can occur only for ,h’ such that 

arg[(%+ip)hlg] = 2 m ,  n = 0, + 1 ,  Ifr2 ,.... 

This condition serves for the determination of p. 
The evolution of an originally small perturbation seems to pass through the 

following stages. In the intial stage A(t) grows exponentially. The nonlinearity, on 
the one hand, contributes to this growth and, on the other, changes arg A .  The result 
may be visualized in the form of an untwisting spiral on a complex plane A ;  at 
sufficiently large IAl this spiral is described by (4.9). 

This has been merely a hypothetical scenario of the evolution. We are unaware of 
any flow models in which q+ =l= q- ; therefore, we have not undertaken a more detailed 
(with the help numerical solution, for example) study of the perturbation evolution 
that is described by (4.2) with a complex A. 

5. Discussion 
In  this study we have derived for the regime of an unsteady CL the nonlinear 

equations (4.1) and (4.2) governing (each in its respective region of parameters, see 
figure 1 )  the time evolution of perturbations in a weakly supercritical shear flow of 
stratified fluid. Based on them one can develop a combined evolution equation that 
is valid throughout the entire region of an unsteady CL: 

dA 
- = y , A  + (7- 1) vb2 Iom dss5 1: d a  aG(a) A(t -8) A ( t -  m)A(t - S  - as) 
dt 

+ b, ds s5 J: dx I: dy J: dzH(x, y ,  x )  A(t -8) A ( t  -2s)  A(t - xys) 

x K(t - 2xyzs) A(t - (1 + x+ xy- 2xyz) 8)’ (5.1) 

where b, = k6/12n7, b, = 2fk7 /6 r2 (+)  are positive constants. 
As an ‘initial’ condition for its solution we have .made the assumption that the 

perturbation evolves from the linear eigenfunctibn with a vanishingly small (at 
t +- 03) amplitude. This has saved us from specifying the ‘traditional’ initial 
condition, i.e. the spatial structure not only of the fundamental but also of all the 
other harmonics (at least those that were required in $3  for the derivation of the 
evolution equation) a t  t = 0. 

In such a ‘traditional ’ formulation the problem of non-dissipative flow was solved 
by Brown & Stewartson (1978). However, they were unsuccessful in surmounting the 
difficulty concerned. On the one ha , although the initial problem was solved, the 
initial conditions were not formul 2 ed explicitly and, on the other, their evolution 
equation has a rather limited range of validity. 

We shall show that it is derivable from (5.1) if we assume A = 0 as t < 0 and 
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consider only sufficiently small t ,  at which the amplitude can be taken equal to  the 
initial (at t = 0) value. Indeed, a t  v = K = 0 the cubic term in (5.1) vanishes and we 

x @ ( ~ - ( ~ + x + x z J - ~ x ~ z ) ~ )  = Y ~ A + A , ~ ' ~ ' ~ A ~ ~ A ,  A, % G X  lo-', 

which exactly coincides with equation (8.1) given in Brown & Xtewartson (1978) 
(they only give the order of magnitude of A,). This equation is valid only for small t 
such that the amplitude has not, yet been able to alter substantially and, therefore, 
describes only the trend of development rather than the development of initial 
perturbations. 

This paper completes our study of the possible regimes of development of initially 
small perturbations in a weakly supercritical, stratified shear flow. The results 
obtained provide a complete picture of the evolution. Let us suppose that the initial 
perturbation amplitude is very small such that the perturbation begins right a t  the 
bottom of the diagram shown in figure 1 .  In  the early stage, nonlinearity is non- 
competitive and the perturbation grows exponentially ( A  - e y L t )  with a linear 
growth rate yL. The subsequent fate of the perturbation depends on the super- 
criticality (i.e. on yL) as well as other parameters of the problem. 

If the supercriticality is small enough (yL < vi), the critical layer is viscous initially 
and the evolution equation has the form (Paper 1) 

dA b 
dt V 
-= y , ~ + - ( 7 - 1 ) ~ 3 .  

With the Prandtl number 7 < 1,  nonlinearity stabilizes the perturbation growth a t  
the level A = A ,  = O(yiv i ) .  When 7 > 1, nonlinearity, on the contrary, raises the rate 
of perturbation growth and renders the evolution 'explosive ' : A - (to - t)". Once the 
amplitude A = O(vf) is attained, the CL regime changes to unsteady and the 
subsequent evolution is now governed by equation (5.1). Upon passing into the 
unsteady CL regime, the perturbation growth continues, with its 'explosive ' 
character unaltered. When vi < A < vi cubic nonlinearity is dominant and the 
amplitude increases as A - ( t l - t ) f ;  after that, nonlinearity A5 becomes dominant 
and the amplitude varies now up to  A - O(1) according to  (4.8), as A - ( t 2 - t ) - z .  

Thus, when yL < vi, the perturbation either is stabilized a t  a sufficiently low level 
(if 7 < 1) or grows infinitely (if 7 > i), evolving through four stages, in each of which 
the time dependence of the amplitude is determined by an appropriate intermediate 
asymptotic : 

A - eyLt ,  A < A ,  ; A - (t,-t)-;, A ,  < A  < v!; (5 .3a ,b)  

A - ( t l - t ) - i ,  vk < A < v+ ; A - ( t , - t ) f ,  vi < A < 1 .  (5 .3c,d)  

The subsequent evolution of the perturbation is associated with a severe restruc- 
turing of the flow and is not described by weakly nonlinear theory. 

In  the case of a higher supercriticality (vi < yL < 1 ) ,  the perturbation evolves all 
the time in the unsteady CL regime, in accordance with (5.1). Initially, the amplitude 
grows exponentially and then nonlinear terms come into play. There is only a narrow 
region (vi < yL < v:) in which the competition between nonlinearities may take 
place. When 7 > 1, this competition leads merely to the replacement of one 
'explosive' regime ( A  - ( t3- t ) -6)  by another ( A  - ( t 4 - t ) - i ) .  When 7 < 1, a much 
more interesting picture might emerge. Cubic nonlinearity specifies, in the range 
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V! < A < vt, a rather peculiar regime of amplitude variation, viz. oscillations with 
an ever increasing swing. Ultimately, nonlinearity A5 comes into play and then 
the perturbation grows monotonically according to (4.8) : A N (t5-t)-i.  However, it  
seems difficult to realize such a regime in practice because even at quite a large 
Reynolds number (lo6, for example, i.e. v = 10P) cubic nonlinearity is dominant 
in a relatively small range of amplitudes: lop4 4 A < lop3, so that the relevant 
intcrmcdiate asymptotic may not have enough time to become established. Finally, 
as yL > v:, cubic nonlinearity becomes non-competitive - either compared with 
the linear term or compared with nonlinearity A5 - and has virtually no influence 
upon the development of the perturbation, which increases monotonically, first 
exponentially and then ‘explosively ’ according to (4.8). 

Three points should be emphasized in conclusion. First, i t  appears that, as the 
initially small perturbation evolves, the nonlinear CL regime cannot be realized : the 
growth rate of the perturbations with increasing amplitude increases so rapidly that 
the width of the unsteady CL ( I ,  N y )  is a t  all times greater than the nonlinear CL 
width (ZN - A!). (This does not mean, however, that the existence of a nonlinear CL 
in a stratified flow is always impossible. It can appear in, for example, the problem 
of the interaction between internal gravity waves of a finite amplitude and a shear 

Second, the evolution equation (5.1) is a fully sufficient one up to amplitudes 
A- 0(1) in the sense that it is not necessary to take higher-order nonlinear terms 
into account. The reason for this has already been discussed : that is the expansion of 
the nonlinear term in the evolution equation proceeds in the parameter A2/13 (where 
l - I ,  - y is the width of the unsteady CL), which remains small during the course of 
the evolution : A Z / P  = O(AS) < 1. 

And third, nonlinear terms of (5.1) do not depend on the flow structure as a whole; 
therefore, (5.1) is readily extended to virtually any weakly supercritical, stratified 
shear flow with a monotonic velocity profile. Besides, (5.1) is easy to generalize to the 
case of perturbations modulated in x. A more detailed discussion of these questions 
has been given in Paper 1 .  

flow). 
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Appendix A. The solution of the equation NF = R 
For the lth harmonic 

As l += 0, then 

N,=illc Y-- -  9-$ [( Z7) ] 
and all essential properties of the solution can be demonstrated by taking the 
fundamental (1 = 1)  as an example. The zeroth harmonic does not keep within this 
scheme and all related calculations are made in the main text. I n  order to be as 
close as possible to the problem solved in this paper, let us consider the system of 
equations 

= ;ikG+R,, R I G  = R, 
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fiq F = R, R = fi, R, +$ikR, 

A . l .  The homogeneous equations fi, W = 0 and fit U = 0 

Let us define the Fourier transformation as usual : 

x ( w )  eiwrdw, z (w)  = 
00 

The equations under consideration in terms of the Fourier components take the 
form ~ w 

Nlww 3 i k ( z 9 - i ) w  = 0, 

w = b ( w ) d ,  

N;wu = - k k 2 ( z 2 9 2 + ~ ) u  = 0 ;  

u = d [ c ( o )  + d ( w )  In (&2)1. 

z = Y+-. k 
Their solutions are 

Let us calculate W .  For this purpose it is convenient first to calculate W,: 

According to the causality principle, the value of W, a t  time T must depend on the 
past (t  < 7) only: the future cannot contribute to  it. Permitting w to be complex- 
valued we see that the causality requires the integrand to be analytic in the lower 
half-plane, i.e. as Imw < 0. A simple rearrangement provides 

If this is integrated in Y directly, we obtain a divergent integral in it. Therefore we 
first extend the integration in t to contour C in the complex plane dissected by the ray 
argt = -271 (figure 2 a ) :  

w Y - - 4 8  1 (:r Jc dt t-+B(T- t )  e-ikyt 

and then integrate in Y :  
e3irr/4 w=- 4(xk)t d t t - $ 4 7 - t )  e-iLYt 

In a similar way 

The functions W and U are analytic in the lower half-plane of complex-valued Y 
and tend to zero as 7+--00, if B(T),  C(T) and D(T) tend to zero. From a solution 
in the case of a non-competitive nonlinearity we know that they tend to zero 
exponentially ( - err) and in view of the theory of Laplace transformation this means 
the analyticity of W and U in a more extended domain, namely in the half-plane 
Im Y < r/k. As 1YI-t m(-n < arg Y < 0 )  the functions W and U have the 
following asymptotic representations : 
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Note that the equation N: U = 0 is equivalent to N, U = ikW,, where W, is obtained 
from (A 3) after substituting D(T)  instead of B(7). 

A.2. The equation N, F = R 
In terms of Fourier components we have 

After the inverse transformation we obtain in the same manner as in the preceding 
Subsection 

u (  
1 "  F = - so ds Jam dt R(7 - t ,  y - 8) eWikYt du eikstu t 1 - u)-: 

= r d s  r d t R ( 7 - t ,  Y-s) e-ikYt@(z, 1;ikst). (A 7 )  
Jo Jo 

Here @(a, c ;  z )  is a Kummer's confluent hypergeometric function (Erddlyi 1953) and 
contour L for integrating in u is shown in figure 2 ( b ) .  

In this Subsection we have obtained a particular solution of the equation. To 
obtain the general solution one needs to add an arbitrary solution of a homogeneous 
equation ( W ) .  Solving (A 1) is reduced to the consistent integration of two equations 
of the type just considered. The results for the lth harmonic are obtained by 
replacement of k by 112. 

A.3. The asymptotic expansions 

If R-tO as Y-t+_co, then in (A6)  we have 

i "  
k 

ds 1; dt R(7 - t, s) e-ikst 

f = - - Yi I-, ds z-b(s) + O( Y-i), 

m-i0 
du u-t eiut s - m -10 

whence F - -- Y% 
2nk -m 

so that 

The same result may be obtained from (A 7) if an asymptotic representation for @ 
is used (as R is localized, the main contribution to the integral a t  large Y is due to 
Y - s  = 0(1)) ,  i.e. to Is1 % 1). We have obtained an asymptotic representation of 
the particular solution as Y ++ co (as Y +- co, F = O( Y-i)). For a general solution 
we have evidently the representation 

Now we consider the question of finding an asymptotic expansion for the solution 
of (A 1) (or of (A 2) equivalent to it). In  terms of Fourier components 

N;w f = - k 2 ( ~ 2 3 2  + $ ) f  = A,, rl + kikr, (A 10) 
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we can see that if rl and r2 are localized in Y ,  then as Y --f 00 

f =  c ' Y t + d ' Y t I n ( b Y ) + O ( Y - t l n ( ~ Y ) ) .  (A 11) 
To derive the evolutionary equation we have first to calculate d'. Multiplying (A 10) 
by the eigenfunction v of the operator NLo conjugate to Nlo: 

X:,G z - i k ( 3 z + & ) v  = -ik(zg++)v = 0, v = z-g 
and integrating in Y we obtain 

Using (A 11) we see that the first integral is 

Therefore 

After the inverse Fourier transformation we see that as Y +* 00 

Finally, as R is not localized (i.e. does not tend to zero as Y +-* 00) the calculation 
of an asymptotic expansion requires a special consideration. For example, one can 
separate the non-localized part in R and try to obtain for it the exact solution of 
(A 7) type and then calculate an asymptotic expansion. 
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